Advanced Nonlinear Studies (Aug 2022)
Existence of ground state solutions for critical fractional Choquard equations involving periodic magnetic field
Abstract
In this paper, we consider the following critical fractional magnetic Choquard equation: ε2s(−Δ)A∕εsu+V(x)u=εα−N∫RN∣u(y)∣2s,α∗∣x−y∣αdy∣u∣2s,α∗−2u+εα−N∫RNF(y,∣u(y)∣2)∣x−y∣αdyf(x,∣u∣2)uinRN,\begin{array}{rcl}{\varepsilon }^{2s}{\left(-\Delta )}_{A/\varepsilon }^{s}u+V\left(x)u& =& {\varepsilon }^{\alpha -N}\left(\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}\frac{| u(y){| }^{{2}_{s,\alpha }^{\ast }}}{| x-y\hspace{-0.25em}{| }^{\alpha }}{\rm{d}}y\right)| u\hspace{-0.25em}{| }^{{2}_{s,\alpha }^{\ast }-2}u\\ & & +{\varepsilon }^{\alpha -N}\left(\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}\frac{F(y,| u(y){| }^{2})}{| x-y\hspace{-0.25em}{| }^{\alpha }}{\rm{d}}y\right)\hspace{0.08em}f\left(x,| u\hspace{-0.25em}{| }^{2})u\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array} where ε>0\varepsilon \gt 0, s∈(0,1)s\in \left(0,1), α∈(0,N)\alpha \in \left(0,N), N>max{2μ+4s,2s+α∕2}N\gt {\rm{\max }}\left\{2\mu +4s,2s+\alpha /2\right\}, 2s,α∗=2N−αN−2s{2}_{s,\alpha }^{\ast }=\frac{2N-\alpha }{N-2s} is the upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, (−Δ)As{\left(-\Delta )}_{A}^{s} stands for the fractional Laplacian with periodic magnetic field AA of C0,μ{C}^{0,\mu }-class with μ∈(0,1]\mu \in (0,1] and VV is a continuous potential and allows to be sign-changing. Under some mild assumptions imposed on VV and ff, we establish the existence of at least one ground state solution.
Keywords