Discrete and Continuous Models and Applied Computational Science (Dec 2021)
Numerical simulation of thermal processes occurring in materials under the action of femtosecond laser pulses
Abstract
In this work, a numerical study of the solutions of the parabolic and hyperbolic equations of heat conduction with the same physical parameters is carried out and a comparative analysis of the results obtained is carried out. The mathematical formulation of the problem is discussed. The action of the laser is taken into account through the source function, which was chosen as a double femtosecond laser pulse. In the hyperbolic equation, in contrast to the parabolic one, there is an additional parameter that characterizes the relaxation time of the heat flux. In addition, the source of the hyperbolic equation contains an additional term - the derivative of the power density of the source of the parabolic equation. This means that the temperature of the sample is influenced not only by the power density of the source, but also by the rate of its change. The profiles of the sample temperature at different times and its dynamics at different target depths are shown. The calculations were carried out for different time delays between pulses and for different relaxation parameters.
Keywords