Shock and Vibration (Jan 2018)

Developing Seismic Risk Prediction Functions for Structures

  • Naveed Ahmad,
  • Qaisar Ali,
  • Muhammad Adil,
  • Akhtar Naeem Khan

DOI
https://doi.org/10.1155/2018/4186015
Journal volume & issue
Vol. 2018

Abstract

Read online

The paper presents the development of a nonlinear static displacement-based methodology for seismic risk assessment and loss estimation of stone masonry building stock of Pakistan. Experimental investigation of one-third scaled model, tested on shake table, is performed in order to obtain lateral strength and drift limits for stone masonry and develop damage scale for performance-based assessment. Prototype buildings are designed respecting the existing building stock and investigated through nonlinear static and dynamic time history analyses. Nonlinear static mechanical models, for both global and local vulnerabilities, are developed for the considered typology which are used to derive analytical structure-dependent fragility functions considering expected sources of uncertainties explicitly in contrary to the conventional procedures. Furthermore, seismic risk assessment is performed for different scenario earthquakes and presented in terms of structure-independent fragility functions to estimate the mean damage ratio, the repair cost as a fraction of replacement cost, and casualties, with the dispersion being quantified, given source-to-site distance and magnitude for an earthquake event. The methodology is tested for seismic risk assessment of the considered typology in recent 2005 Kashmir earthquake, which is reasonably predicted. Future development of the methodology is required with additional experimental tests on rubble stone masonry material in order to increase confidence in future applications.