Nature Communications (Nov 2022)

CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder

  • Aurélie de Thonel,
  • Johanna K. Ahlskog,
  • Kevin Daupin,
  • Véronique Dubreuil,
  • Jérémy Berthelet,
  • Carole Chaput,
  • Geoffrey Pires,
  • Camille Leonetti,
  • Ryma Abane,
  • Lluís Cordón Barris,
  • Isabelle Leray,
  • Anna L. Aalto,
  • Sarah Naceri,
  • Marine Cordonnier,
  • Carène Benasolo,
  • Matthieu Sanial,
  • Agathe Duchateau,
  • Anniina Vihervaara,
  • Mikael C. Puustinen,
  • Federico Miozzo,
  • Patricia Fergelot,
  • Élise Lebigot,
  • Alain Verloes,
  • Pierre Gressens,
  • Didier Lacombe,
  • Jessica Gobbo,
  • Carmen Garrido,
  • Sandy D. Westerheide,
  • Laurent David,
  • Michel Petitjean,
  • Olivier Taboureau,
  • Fernando Rodrigues-Lima,
  • Sandrine Passemard,
  • Délara Sabéran-Djoneidi,
  • Laurent Nguyen,
  • Madeline Lancaster,
  • Lea Sistonen,
  • Valérie Mezger

DOI
https://doi.org/10.1038/s41467-022-34476-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.