PLoS ONE (Jan 2020)

Development and characterization of genomic resources for a non-model marine teleost, the red snapper (Lutjanus campechanus, Lutjanidae): Construction of a high-density linkage map, anchoring of genome contigs and comparative genomic analysis.

  • Adrienne E Norrell,
  • Kenneth L Jones,
  • Eric A Saillant

DOI
https://doi.org/10.1371/journal.pone.0232402
Journal volume & issue
Vol. 15, no. 4
p. e0232402

Abstract

Read online

The red snapper Lutjanus campechanus is an exploited reef fish of major economic importance in the Gulf of Mexico region. Studies of genome wide genetic variation are needed to understand the structure of wild populations and develop breeding programs for aquaculture but interpretation of these genome scans is limited by the absence of reference genome. In this work, the first draft of a reference genome was developed and characterized for the red snapper. P-454 and Illumina sequencing were conducted to produce paired-end reads that were assembled into reference contigs and scaffolds. The current assembly spans over 770 Mb, representing an estimated 69% of the red snapper genome in 67,254 scaffolds (N50 = 16,803 bp). The genome contigs were applied to map double digest Restriction-Site Associated DNA Tags and characterize Single Nucleotide Polymorphisms (SNPs) in five outbred full-sib families. The identified SNPs and 97 microsatellite loci were used to generate a high-density linkage map that includes 7,420 markers distributed across 24 linkage groups and spans 1,346.64 cM with an average inter-marker distance of 0.18 cM. Sex-specific maps revealed a 1.10:1 female to male map length ratio. A total of 4,422 genome contigs (10.5% of the assembly) were anchored to the map and used in a comparative genomic analysis of the red snapper and two model teleosts. Red snapper showed a high degree of chromosome level syntenic conservation with both medaka and spotted green puffer and a near one to one correspondence between the 24 red snapper linkage groups and corresponding medaka chromosomes was observed. This work established the first draft of a reference genome for a lutjanid fish. The obtained genomic resources will serve as a framework for the interpretation of genome scans during studies of wild populations and captive breeding programs.