European Journal of Medical Research (Aug 2022)

The association between serum lipid levels and histological type of breast cancer

  • Xinru Wang,
  • Yajie Wang,
  • Miaomiao Wang,
  • Xin Chen,
  • Wenjing Cui,
  • Xiao Chen

DOI
https://doi.org/10.1186/s40001-022-00784-y
Journal volume & issue
Vol. 27, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Studies have investigated the association between serum lipids level or apolipoprotein levels and breast cancer (BC) risk. However, the relationship between serum lipids level and apolipoprotein levels and histological type of breast cancer remains unclear. This study was aimed to explore the association between serum lipids level and the histological type of BC, particularly to estrogen receptor (ER) and progesterone receptor (PR) positive BC. Materials and methods 220 cases of pathology-confirmed BC were retrospectively collected in this study. Patients’ demographic information, clinical data, and pathological features were obtained from medical records. Serum levels including high-density lipoprotein-cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c), total cholesterol (TC), triglyceride (TG), apolipoprotein A (ApoA), ApoB, ApoE and lipoprotein a(LP(a)) were collected before treatment. Logistic regression analyses were used to show the association between serum lipids and subtypes of BC. Receiver operating characteristic (ROC) curves were generated to analyze the predictive performance. Results There were 70 ER-negative and 73 PR-negative BC. Patients with ER-negative BC had higher HDL-c, higher LDL-c, and higher LP(a) than those in ER-positive one (p < 0.05). Patients with PR-negative BC were more likely to have high LDL-c and high LP(a) levels than patients with PR-positive one (p < 0.05). Multivariate logistic regression analysis showed that serum HDL-c (odds ratio (OR): 0.27, 95% confidence interval (CI) 0.10–0.76), LDL-c (OR: 0.19, 95%CI 0.04–0.93) and LP(a) (OR: 0.23,95%CI 0.07–0.80) levels were negatively associated with ER-positive BC, and serum HDL-c and LDL-c levels were significantly negatively associated with PR-positive BC (OR: 0.32, 95%CI 0.12–0.82; OR: 0.14, 95%CI 0.03–0.77). In addition, ER and PR positive BC was negatively associated with serum HDL-c and LDL-c levels (OR = 0.39, 95% CI 0.17–0.91; OR = 0.22, 95% CI 0.06–0.85) after adjusting with confounders. Serum HDL-c level (OR = 0.13, 95% CI 0.02–0.87) was still independently associated with ER and PR positive BC in postmenopausal women. The area under the curves (AUCs) of HDL-c to identify ER-positive BC, PR-positive BC, and ER and PR positive BC were 0.65 (95%CI 0.58–0.73, P < 0.01), 0.62 (95%CI 0.54–0.69, P < 0.01) and 0.64 (95%CI 0.56–0.72, P < 0.01), respectively. Conclusions Serum HDL-c and LDL-c levels were related to ER or PR positive BC. Lipid levels may also have acceptable performance in identifying BC histological type.

Keywords