Pharmacia (Jan 2022)
Improvement of in vitro antioxidant activity of kaempferol by encapsulation in copolymer micelles
Abstract
Read online Read online Read online
Antioxidant capacity of poorly soluble natural antioxidant kaempferol, in particular free or loaded in two types of cationic micelles, was studied on non-enzyme induced lipid peroxidation (LPO) in vitro. The micelles were based on triblock copolymers - poly(2-(dimethylamino)ethyl methacrylate-b-poly(propylene oxide)-b-poly(2-(dimethylamino)ethyl methacrylate (PDMAEMA-PPO-PDMAEMA) and poly(2-(dimethylamino)ethyl methacrylate-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate (PDMAEMA-PCL-PDMAEMA). The lipid peroxidation was induced by incubating of rat liver microsomes with iron sulphate and ascorbic acid (Fe2+/AA). The effect of free and micellar kaempferol (at concentrations 25, 50 and 75 μg/ml) was assessed after 20 min incubation time. In the non-enzyme lipid peroxidation model, the kaempferol-loaded micelles significantly decreased the formation of malondialdehyde (MDA). The effect of kaempferol loaded in PDMAEMA-PCL-PDMAEMA micelles was more pronounced, showing an improved antioxidant activity in the conditions of oxidative stress and lipid peroxidation in vitro.