Redox Biology (Aug 2023)

Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice

  • Fei Han,
  • Zi-fan Ding,
  • Xiao-lei Shi,
  • Qing-tian Zhu,
  • Qin-hao Shen,
  • Xing-meng Xu,
  • Jun-xian Zhang,
  • Wei-juan Gong,
  • Wei-ming Xiao,
  • Dan Wang,
  • Wei-wei Chen,
  • Liang-hao Hu,
  • Guo-tao Lu

Journal volume & issue
Vol. 64
p. 102787

Abstract

Read online

Introduction: Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. Objectives: The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. Methods: Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. Results: Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVβ5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. Conclusion: The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.

Keywords