Scientific Reports (Aug 2017)

Direct Oral Anticoagulants Form Thrombus Different From Warfarin in a Microchip Flow Chamber System

  • Masanobu Ishii,
  • Koichi Kaikita,
  • Miwa Ito,
  • Daisuke Sueta,
  • Yuichiro Arima,
  • Seiji Takashio,
  • Yasuhiro Izumiya,
  • Eiichiro Yamamoto,
  • Megumi Yamamuro,
  • Sunao Kojima,
  • Seiji Hokimoto,
  • Hiroshige Yamabe,
  • Hisao Ogawa,
  • Kenichi Tsujita

DOI
https://doi.org/10.1038/s41598-017-07939-6
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Direct oral anticoagulants (DOACs) have low risk of intracranial hemorrhage compared to warfarin. We sought to clarify the different mechanisms responsible for suppression of bleeding events using the Total Thrombus-formation Analysis System (T-TAS), a flow-microchip chamber with thrombogenic surfaces. Blood samples were obtained at Off- and On-anticoagulant (trough) from 120 consecutive patients with atrial fibrillation (warfarin; n = 29, dabigatran; n = 19, rivaroxaban; n = 47, apixaban; n = 25), which were used for T-TAS to compute the area under the curve (AUC) (AR10-AUC30) in the AR chip, and to measure plasma concentrations of DOACs at On-anticoagulant. In addition, the two-dimensional area covered by thrombi (%) in the capillary was analyzed every 3 minutes after sample applications. The AR10-AUC30 correlated weakly and negatively with plasma concentrations of DOACs, and the levels at On-anticoagulant were lower in all groups than at Off-anticoagulant. AR10-AUC30 levels at Off- and On-anticoagulant were identical among the groups. The thrombi areas in early phase were significantly larger in rivaroxaban and apixaban than warfarin and dabigatran groups. The findings suggested that visual analysis of the AR-chip can identify the differential inhibitory patterns of warfarin and DOACs on thrombus formation under flow condition.