Metals (Jul 2020)
Computing the Growth of Small Cracks in the Assist Round Robin Helicopter Challenge
Abstract
Sustainment issues associated with military helicopters have drawn attention to the growth of small cracks under a helicopter flight load spectrum. One particular issue is how to simplify (reduce) a measured spectrum to reduce the time and complexity of full-scale helicopter fatigue tests. Given the costs and the time scales associated with performing tests, a means of computationally assessing the effect of a reduced spectrum is desirable. Unfortunately, whilst there have been a number of studies into how to perform a damage tolerant assessment of helicopter structural parts there is currently no equivalent study into how to perform the durability analysis needed to determine the economic life of a helicopter component. To this end, the present paper describes a computational study into small crack growth in AA7075-T7351 under several (reduced) helicopter flight load spectra. This study reveals that the Hartman-Schijve (HS) variant of the NASGRO crack growth equation can reasonably accurately compute the growth of small naturally occurring cracks in AA7075-T7351 under several simplified variants of a measured Black Hawk flight load spectra.
Keywords