Environmental Research Letters (Jan 2012)
Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites
Abstract
Recent studies have examined tropical upper tropospheric warming by comparing coupled atmosphere–ocean global circulation model (GCM) simulations from Phase 3 of the Coupled Model Intercomparison Project (CMIP3) with satellite and radiosonde observations of warming in the tropical upper troposphere relative to the lower-middle troposphere. These studies showed that models tended to overestimate increases in static stability between the upper and lower-middle troposphere. We revisit this issue using atmospheric GCMs with prescribed historical sea surface temperatures (SSTs) and coupled atmosphere–ocean GCMs that participated in the latest model intercomparison project, CMIP5. It is demonstrated that even with historical SSTs as a boundary condition, most atmospheric models exhibit excessive tropical upper tropospheric warming relative to the lower-middle troposphere as compared with satellite-borne microwave sounding unit measurements. It is also shown that the results from CMIP5 coupled atmosphere–ocean GCMs are similar to findings from CMIP3 coupled GCMs. The apparent model-observational difference for tropical upper tropospheric warming represents an important problem, but it is not clear whether the difference is a result of common biases in GCMs, biases in observational datasets, or both.
Keywords