PLoS ONE (Jan 2012)
MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells.
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay, adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2) was a direct target of miR-125b by Target-Scan analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot was used to observe the variation of Vimentin and α-SMA in breast cancer cells. In summary, our study provided new insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in pro-metastasis by targeting STARD13.