Applied Sciences (Nov 2018)

Angioplasty Using 4-Hexylresorcinol-Incorporated Silk Vascular Patch in Rat Carotid Defect Model

  • Chan-Woo Kim,
  • Min-Keun Kim,
  • Seong-Gon Kim,
  • Young-Wook Park,
  • Yong-Tae Park,
  • Dae-Won Kim,
  • Hyun Seok

DOI
https://doi.org/10.3390/app8122388
Journal volume & issue
Vol. 8, no. 12
p. 2388

Abstract

Read online

The aim of this study was to evaluate and compare the efficacy of 4-hexylresorcinol (4-HR)-incorporated silk as a vascular patch scaffold to that of the commercial polytetrafluoroethylene (PTFE) vascular patch (GORE® ACUSEAL). The expression of the vascular endothelial cell growth factor-A (VEGF-A) after application of 4-HR was studied in RAW264.7 and HUVEC cells. In the animal study, a carotid artery defect was modeled in Sprague Dawley rats (n = 30). The defect was directly closed in the control group (n = 10), or repaired with the PTFE or 4-HR silk patch in the experimental groups (n = 10 per group). Following patch angioplasty, angiography was performed and the peak systolic velocity (PSV) was measured to evaluate the artery patency. The application of 4-HR was shown to increase the expression of VEGF-A in RAW264.7 and HUVEC cells. The successful artery patency rate was 80% for the 4-HR silk group, 30% for the PTFE group, and 60% for the control group. The PSV of the 4-HR silk group was significantly different from that of the control group at one week and three weeks post-angioplasty (p = 0.005 and 0.024). Histological examination revealed new regeneration of the arterial wall, and that the arterial diameter was well maintained in the 4-HR silk group in the absence of an immune reaction. In contrast, an overgrowth of endothelium was observed in the PTFE group. In this study, the 4-HR silk patch was successfully used as a vascular patch, and achieved a higher vessel patency rate and lower PSV than the PTFE patch.

Keywords