Nanomaterials (May 2024)

Tailored Triggering of High-Quality Multi-Dimensional Coupled Topological States in Valley Photonic Crystals

  • Guangxu Su,
  • Jiangle He,
  • Xiaofei Ye,
  • Hengming Yao,
  • Yaxuan Li,
  • Junzheng Hu,
  • Minghui Lu,
  • Peng Zhan,
  • Fanxin Liu

DOI
https://doi.org/10.3390/nano14100885
Journal volume & issue
Vol. 14, no. 10
p. 885

Abstract

Read online

The combination of higher-order topological insulators and valley photonic crystals has recently aroused extensive attentions due to the great potential in flexible and efficient optical field manipulations. Here, we computationally propose a photonic device for the 1550 nm communication band, in which the topologically protected electromagnetic modes with high quality can be selectively triggered and modulated on demand. Through introducing two valley photonic crystal units without any structural alteration, we successfully achieve multi-dimensional coupled topological states thanks to the diverse electromagnetic characteristics of two valley edge states. According to the simulations, the constructed topological photonic devices can realize Fano lines on the spectrum and show high-quality localized modes by tuning the coupling strength between the zero-dimensional valley corner states and the one-dimensional valley edge states. Furthermore, we extend the valley-locked properties of edge states to higher-order valley topological insulators, where the selected corner states can be directionally excited by chiral source. More interestingly, we find that the modulation of multi-dimensional coupled photonic topological states with pseudospin dependence become more efficient compared with those uncoupled modes. This work presents a valuable approach for multi-dimensional optical field manipulation, which may support potential applications in on-chip integrated nanophotonic devices.

Keywords