PLoS ONE (Jan 2011)

Reduced rate of neural differentiation in the dentate gyrus of adult dysbindin null (sandy) mouse.

  • Naomi Nihonmatsu-Kikuchi,
  • Ryota Hashimoto,
  • Satoko Hattori,
  • Shinsuke Matsuzaki,
  • Takiko Shinozaki,
  • Haruka Miura,
  • Shigeru Ohota,
  • Masaya Tohyama,
  • Masatoshi Takeda,
  • Yoshitaka Tatebayashi

DOI
https://doi.org/10.1371/journal.pone.0015886
Journal volume & issue
Vol. 6, no. 1
p. e15886

Abstract

Read online

Genetic variations in the gene encoding dysbindin has consistently been associated with schizophrenia and bipolar disorder, although little is known about the neural functions carried out by dysbindin. To gain some insight into this area, we took advantage of the readily available dysbindin-null mouse sandy (sdy-/-) and studied hippocampal neurogenesis using thymidine analogue bromodeoxuridine (BrdU). No significant differences were found in the proliferation (4 hours) or survival (1, 4 and 8 weeks after the last BrdU injection) of progenitors in the subgranular regions of the dentate gyrus between sdy-/- and sdy+/+ (control) mice. However, 4 weeks after the last BrdU injection, a significant reduction was observed in the ratio of neuronal differentiation in sdy-/- when compared to that of sdy+/+ (sdy+/+ = 87.0 ± 5.3% vs. sdy-/- = 71.3 ± 8.3%, p = 0.01). These findings suggest that dysbindin plays a role during differentiation process in the adult hippocampal neurogenesis and that its deficit may negatively affect neurogenesis-related functions such as cognition and mood.