Scientific Reports (Jan 2024)
3D integral imaging of acoustically trapped objects
Abstract
Abstract 3D imaging provides crucial details about the objects and scenes that may not be obtained via 2D imaging methods. However, there are several applications in which the object to be 3D-imaged requires to be immobilized. The integrated digital holographic microscopy (DHM) and optical trapping (OT) system is a useful solution for such a task, but both DHM and OT are mostly suitable for microscopic specimens. Here, for the first time to the best of our knowledge and as an analogy to the DHM-OT system, we introduce integral imaging (InIm) and acoustic trapping (AT) integrated system for 3D imaging of immobilized mesoscopic and macroscopic objects. Post-processing of InIm data enables reconstructing the scene at any arbitrary plane, therefore, it re-focuses any particular depth of the object, which is a curtail task, especially when the object is trapped by AT. We demonstrate the capability of our system by simultaneous trapping and 3D imaging of single and multiple irregularly shaped objects with mm sizes.