Scientific Reports (Apr 2022)

Characterisation of the transient mechanical response and the electromyographical activation of lower leg muscles in whole body vibration training

  • Isotta Rigoni,
  • Tecla Bonci,
  • Paolo Bifulco,
  • Antonio Fratini

DOI
https://doi.org/10.1038/s41598-022-10137-8
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The aim of this study is to characterise the transient mechanical response and the neuromuscular activation of lower limb muscles in subjects undergoing Whole Body Vibration (WBV) at different frequencies while holding two static postures, with focus on muscles involved in shaping postural responses. Twenty-five participants underwent WBV at 15, 20, 25 and 30 Hz while in hack squat or on fore feet. Surface electromyography and soft tissue accelerations were collected from Gastrocnemius Lateralis (GL), Soleus (SOL) and Tibialis Anterior (TA) muscles. Estimated displacement at muscle bellies revealed a pattern never highlighted before that differed across frequencies and postures (p < 0.001). After stimulation starts, muscle oscillation peaks, drops and further stabilises, suggesting the occurrence of a neuromuscular activation to reduce the vibration-induced oscillation. The oscillation attenuation at the SOL muscle correlated with its increased activation (rho = 0.29, p < 0.001). Furthermore, only specific WBV settings led to a significant increase in muscle contraction: WBV-induced activation of SOL and GL was maximal in fore-feet (p < 0.05) and in response to higher frequencies (30 Hz vs 15 Hz, p < 0.001). The analysis of the mechanical dynamics of lower leg muscles highlights a resonant response to WBVs, that for the SOL correlates to the increased muscle activation. Despite differing across frequencies and postures, this resonant behaviour seems to discourage the use of dynamic exercises on vibrating platforms. As for the most efficient WBV combination, calf muscle response to WBVs is maximised if those muscles are already pre-contracted and the stimulation frequencies are in the 25–30 Hz range.