PLoS ONE (Jan 2014)

Altered proteomic polymorphisms in the caterpillar body and stroma of natural Cordyceps sinensis during maturation.

  • Yun-Zi Dong,
  • Li-Juan Zhang,
  • Zi-Mei Wu,
  • Ling Gao,
  • Yi-Sang Yao,
  • Ning-Zhi Tan,
  • Jian-Yong Wu,
  • Luqun Ni,
  • Jia-Shi Zhu

DOI
https://doi.org/10.1371/journal.pone.0109083
Journal volume & issue
Vol. 9, no. 10
p. e109083

Abstract

Read online

OBJECTIVE: To examine the maturational changes in proteomic polymorphisms resulting from differential expression by multiple intrinsic fungi in the caterpillar body and stroma of natural Cordyceps sinensis (Cs), an integrated micro-ecosystem. METHODS: The surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) biochip technique was used to profile the altered protein compositions in the caterpillar body and stroma of Cs during its maturation. The MS chromatograms were analyzed using density-weighted algorithms to examine the similarities and cluster relationships among the proteomic polymorphisms of the Cs compartments and the mycelial products Hirsutella sinensis (Hs) and Paecilomyces hepiali (Ph). RESULTS: SELDI-TOF MS chromatograms displayed dynamic proteomic polymorphism alterations among samples from the different Cs compartments during maturation. More than 1,900 protein bands were analyzed using density-weighted ZUNIX similarity equations and clustering methods, revealing integral polymorphism similarities of 57.4% between the premature and mature stromata and 42.8% between the premature and mature caterpillar bodies. The across-compartment similarity was low, ranging from 10.0% to 18.4%. Consequently, each Cs compartment (i.e., the stroma and caterpillar body) formed a clustering clade, and the 2 clades formed a Cs cluster. The polymorphic similarities ranged from 0.51% to 1.04% between Hs and the Cs compartments and were 2.8- to 4.8-fold higher (1.92%-4.34%) between Ph and the Cs compartments. The Hs and Ph mycelial samples formed isolated clades outside of the Cs cluster. CONCLUSION: Proteomic polymorphisms in the caterpillar body and stroma of Cs change dynamically during maturation. The proteomic polymorphisms in Hs and Ph differ from those in Cs, suggesting the presence of multiple Cs-associated fungi and multiple Ophiocordyceps sinensis genotypes with altered differential protein expression in the Cs compartments during maturation. In conjunction with prior mycological and molecular observations, the findings from this proteomic study support the integrated micro-ecosystem hypothesis for natural Cs.