智能科学与技术学报 (Mar 2024)
Multimodal individual emotion recognition with joint labeling based on integrated learning and clustering
Abstract
To address the low recognition accuracy of generic emotion recognition models when faced with different individuals, a multimodal individual emotion recognition technique based on joint labelling with integrated learning and clustering was proposed. The method first trained a generic emotion recognition model based on a public dataset, then anallysed the distributional differences between the data in the public dataset and the unlabelled data of individuals, and established a cross-domain model for predicting and labelling pseudo-labels of individual data. At the same time, the individual data were weighted clustered and labelled with cluster labels, and the cluster labels were used to jointly label with pseudo-labels, and high confidence samples were screened to further train the generic model to obtain a personalized emotion recognition model. Using this method to annotate these data with the experimentally collected data of 3 emotions from 3 subjects, the final optimized personalized model achieved an average recognition accuracy of more than 80% for the 3 emotions, which was at least a 35% improvement compared to the original generic model.