Symmetry (Mar 2022)

Driver Emotions Recognition Based on Improved Faster R-CNN and Neural Architectural Search Network

  • Khalid Zaman,
  • Zhaoyun Sun,
  • Sayyed Mudassar Shah,
  • Muhammad Shoaib,
  • Lili Pei,
  • Altaf Hussain

DOI
https://doi.org/10.3390/sym14040687
Journal volume & issue
Vol. 14, no. 4
p. 687

Abstract

Read online

It is critical for intelligent vehicles to be capable of monitoring the health and well-being of the drivers they transport on a continuous basis. This is especially true in the case of autonomous vehicles. To address the issue, an automatic system is developed for driver’s real emotion recognizer (DRER) using deep learning. The emotional values of drivers in indoor vehicles are symmetrically mapped to image design in order to investigate the characteristics of abstract expressions, expression design principles, and an experimental evaluation is conducted based on existing research on the design of driver facial expressions for intelligent products. By substituting a custom-created CNN features learning block with the base 11 layers CNN model in this paper for the development of an improved faster R-CNN face detector that detects the driver’s face at a high frame per second (FPS). Transfer learning is performed in the NasNet large CNN model in order to recognize the driver’s various emotions. Additionally, a custom driver emotion recognition image dataset is being developed as part of this research task. The proposed model, which is a combination of an improved faster R-CNN and transfer learning in NasNet-Large CNN architecture for DER based on facial images, enables greater accuracy than previously possible for DER based on facial images. The proposed model outperforms some recently updated state-of-the-art techniques in terms of accuracy. The proposed model achieved the following accuracy on various benchmark datasets: JAFFE 98.48%, CK+ 99.73%, FER-2013 99.95%, AffectNet 95.28%, and 99.15% on a custom-developed dataset.

Keywords