PLoS Biology (Jun 2015)

Mesoscopic patterns of neural activity support songbird cortical sequences.

  • Jeffrey E Markowitz,
  • William A Liberti,
  • Grigori Guitchounts,
  • Tarciso Velho,
  • Carlos Lois,
  • Timothy J Gardner

DOI
https://doi.org/10.1371/journal.pbio.1002158
Journal volume & issue
Vol. 13, no. 6
p. e1002158

Abstract

Read online

Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From "time cells" in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song.