Water Supply (Mar 2023)

Integrated modeling of food–water–energy nexus for maximizing water productivity

  • Majid Khayatnezhad,
  • Ebrahim Fataei,
  • Aliakbar Imani

DOI
https://doi.org/10.2166/ws.2023.038
Journal volume & issue
Vol. 23, no. 3
pp. 1362 – 1374

Abstract

Read online

One of the needs of a sustainable decision-making system in agriculture is to determine the role of energy in the food production cycle. Wind energy turbines can be built in agricultural fields for groundwater exploitation and reduce the cost of energy supply for the pumping system. This study was conducted to evaluate the effect of wind energy and economics on sustainable planning of agricultural water resources. A multiobjective framework was developed based on the nondominated sorting principle and water cycle optimizer. Maximization of benefit per cost ratio for the total cropping pattern and minimization of energy consumption for the growing season were addressed as the objectives of the nonlinear problem. The prediction of biomass production was made by simulating a hybrid structure between the soil moisture balance in the root zone area and the development of the canopy cover of each crop. The results showed that the objectives of the problem have been met by irrigation planning using climatic constraints and drought stresses. About 35% of the total water requirement of plants with a higher harvest index (watermelon, melon, etc.) is in the maturing stage of the shade cover. HIGHLIGHTS The role of wind energy variables has been considered in the agricultural yield production.; A multiobjective framework was developed based on the nondominated sorting principle and water cycle optimizer.; The proposed optimization method showed that the total water productivity increased significantly by 38%.;

Keywords