Symmetry (Sep 2019)

Monte Carlo Study of Rubber Elasticity on the Basis of Finsler Geometry Modeling

  • Hiroshi Koibuchi,
  • Chrystelle Bernard,
  • Jean-Marc Chenal,
  • Gildas Diguet,
  • Gael Sebald,
  • Jean-Yves Cavaille,
  • Toshiyuki Takagi,
  • Laurent Chazeau

DOI
https://doi.org/10.3390/sym11091124
Journal volume & issue
Vol. 11, no. 9
p. 1124

Abstract

Read online

Configurations of the polymer state in rubbers, such as so-called isotropic (random) and anisotropic (almost aligned) states, are symmetric/asymmetric under space rotations. In this paper, we present numerical data obtained by Monte Carlo simulations of a model for rubber formulations to compare these predictions with the reported experimental stress−strain curves. The model is defined by extending the two-dimensional surface model of Helfrich−Polyakov based on the Finsler geometry description. In the Finsler geometry model, the directional degree of freedom σ → of the polymers and the polymer position r are assumed to be the dynamical variables, and these two variables play an important role in the modeling of rubber elasticity. We find that the simulated stresses τ sim are in good agreement with the reported experimental stresses τ exp for large strains of up to 1200 % . It should be emphasized that the stress−strain curves are directly calculated from the Finsler geometry model Hamiltonian and its partition function, and this technique is in sharp contrast to the standard technique in which affine deformation is assumed. It is also shown that the obtained results are qualitatively consistent with the experimental data as influenced by strain-induced crystallization and the presence of fillers, though the real strain-induced crystallization is a time-dependent phenomenon in general.

Keywords