Metals (Nov 2018)
Finite Element Implementation of a Temperature-Dependent Cyclic Plastic Model for SA508-3 Steel
Abstract
A new temperature-dependent cyclic plastic model, combining the nonlinear cyclic softening and kinematic hardening rules is established for a nuclear material of SA508-3 steel. A modified isotropic hardening rule is proposed to capture the temperature-dependent cyclic softening, and a modified kinematic hardening rule is established to improve the prediction of the ratcheting behavior by introducing an exponential function related to the accumulated plastic strain. The stress is updated by the radial return mapping algorithm based on the backward Euler integration. A new expression of consistent tangent modulus for the equilibrium iteration is derived, and then the proposed model is implemented into the finite element software ABAQUS by using the user material subroutine (UMAT) to simulate the temperature-dependent ratcheting behaviors of SA508-3 steel. Finally, the ratcheting evolutions of notched bars at elevated temperature are obtained by uniaxial stress-controlled cyclic tests, and the nonuniform strain fields on the surface of plates with a center hole is measured by using the digital image correlation (DIC) technology. Comparisons between experimental and simulated results of a material point and structural examples show that the implemented model can provide reasonable predictions for ratcheting behaviors and nonuniform strain fields of structures at different temperatures for SA508-3 steel.
Keywords