Journal of Applied Mathematics (Jan 2013)

Exact Traveling Wave Solutions for a Nonlinear Evolution Equation of Generalized Tzitzéica-Dodd-Bullough-Mikhailov Type

  • Weiguo Rui

DOI
https://doi.org/10.1155/2013/395628
Journal volume & issue
Vol. 2013

Abstract

Read online

By using the integral bifurcation method, a generalized Tzitzéica-Dodd-Bullough-Mikhailov (TDBM) equation is studied. Under different parameters, we investigated different kinds of exact traveling wave solutions of this generalized TDBM equation. Many singular traveling wave solutions with blow-up form and broken form, such as periodic blow-up wave solutions, solitary wave solutions of blow-up form, broken solitary wave solutions, broken kink wave solutions, and some unboundary wave solutions, are obtained. In order to visually show dynamical behaviors of these exact solutions, we plot graphs of profiles for some exact solutions and discuss their dynamical properties.