Animal Nutrition (Jun 2021)

Net energy, energy utilization, and nitrogen and energy balance affected by dietary pea supplementation in broilers

  • Nishchal K. Sharma,
  • Zhibin Ban,
  • Hank L. Classen,
  • Huaming Yang,
  • Xiaogang Yan,
  • Mingan Choct,
  • Shu-Biao Wu

Journal volume & issue
Vol. 7, no. 2
pp. 506 – 511

Abstract

Read online

Pea starch consists predominantly of C-type of amylopectin chain which is more resistant to digestive enzymes than A-type of starch thus slowly digested in poultry. It was hypothesized that the presence of slowly digested pea starch in broiler diets will increase net energy and the efficiency of energy utilization in broilers. Two experiments were performed to investigate starch digestibility of pea at different incubation times (in vitro study) and the effect of dietary pea on heat increment and net energy in broilers using an open-circuit respiratory calorimetry system (in vivo study). One-day-old Ross 308 male broilers were fed a common starter crumble from d 1 to 10 and standard grower diets thereafter. At d 21, birds were transferred to the chambers each housing 2 birds. Each treatment was replicated 6 times with 2 identical runs of 3 replicates per treatment. A wheat-soybean meal-based diet was used as a control and the treatment diet contained 500 g of pea/kg pea. In vitro study showed that pellet processing increased (P 0.05) FCR compared to those offered the wheat-based diet. Net energy (NE) and apparent metabolizable energy (AME) values were higher in the pea-based diet than in the wheat-based diet (P = 0.037 for NE and P = 0.018 for AME). Heat production, respiratory quotient, heat increment of feed, efficiency of utilization of gross energy for AME, and efficiency of utilization of AME for NE did not differ (P > 0.05) between the 2 treatments. There was no effect (P > 0.05) of pea on the total tract digestibilities of dry matter, crude protein and ash, but the total tract digestibility of starch was higher (P = 0.022) in the pea-based diet compared to the wheat-based diet. This study provides insight into the energy metabolism of broilers offered a pea-based diet and indicates that dietary pea supplementation increases dietary AME and NE but has no effect on heat increment of feed and the efficiency of energy utilization in broilers.

Keywords