Nanomaterials (Sep 2021)

Low Resistance Asymmetric III-Nitride Tunnel Junctions Designed by Machine Learning

  • Rongyu Lin,
  • Peng Han,
  • Yue Wang,
  • Ronghui Lin,
  • Yi Lu,
  • Zhiyuan Liu,
  • Xiangliang Zhang,
  • Xiaohang Li

DOI
https://doi.org/10.3390/nano11102466
Journal volume & issue
Vol. 11, no. 10
p. 2466

Abstract

Read online

The tunnel junction (TJ) is a crucial structure for numerous III-nitride devices. A fundamental challenge for TJ design is to minimize the TJ resistance at high current densities. In this work, we propose the asymmetric p-AlGaN/i-InGaN/n-AlGaN TJ structure for the first time. P-AlGaN/i-InGaN/n-AlGaN TJs were simulated with different Al or In compositions and different InGaN layer thicknesses using TCAD (Technology Computer-Aided Design) software. Trained by these data, we constructed a highly efficient model for TJ resistance prediction using machine learning. The model constructs a tool for real-time prediction of the TJ resistance, and the resistances for 22,254 different TJ structures were predicted. Based on our TJ predictions, the asymmetric TJ structure (p-Al0.7Ga0.3N/i-In0.2Ga0.8N/n-Al0.3Ga0.7N) with higher Al composition in p-layer has seven times lower TJ resistance compared to the prevailing symmetric p-Al0.3Ga0.7N/i-In0.2Ga0.8N/n-Al0.3Ga0.7N TJ. This study paves a new way in III-nitride TJ design for optical and electronic devices.

Keywords