Arabian Journal of Chemistry (Sep 2022)

Predictive modeling and computational machine learning simulation of adsorption separation using advanced nanocomposite materials

  • Xuefang Hu,
  • Fahad Alsaikhan,
  • Hasan Sh. Majdi,
  • Dmitry Olegovich Bokov,
  • Abdullah Mohamed,
  • Arash Sadeghi

Journal volume & issue
Vol. 15, no. 9
p. 104062

Abstract

Read online

Adsorption process was simulated in this study for removal of Hg and Ni from water using nanocomposite materials. The used nanostructured material for the adsorption study was a combined MOF and layered double hydroxide, which is considered as MOF-LDH in this work. The data were obtained from resources and different machine learning models were trained. We selected three different regression models, including elastic net, decision tree, and Gradient boosting, to make regression on the small data set with two inputs and two outputs. Inputs are Ion type (Hg or Ni) and initial ion concentration in the feed solution (C0), and outputs are equilibrium concentration (Ce) and equilibrium capacity of the adsorbent (Qe) in this dataset. After tuning their hyper-parameters, final models were implemented and assessed using different metrics. In terms of the R2-score metric, all models have more than 0.97 for Ce and more than 0.88 for Qe. The Gradient Boosting has an R2-score of 0.994 for Qe. Also, considering RMSE and MAE, Gradient Boosting shows acceptable errors and best models. Finally, the optimal values with the GB model are identical to dataset optimal: (Ion = Ni, C0 = 250, Ce = 206.0). However, for Qe, it is different and is equal to (Ion = Hg, C0 = 121.12, Ce = 606.15). The results revealed that the developed methods of simulation are of high capacity in prediction of adsorption for removal of heavy metals using nanostructure materials.

Keywords