Antibiotics (Aug 2023)

Palladium(II) Metal Complex Fabricated Titanium Implant Mitigates Dual-Species Biofilms in Artificial Synovial Fluid

  • Sowndarya Jothipandiyan,
  • Devarajan Suresh,
  • Saravanan Sekaran,
  • Nithyanand Paramasivam

DOI
https://doi.org/10.3390/antibiotics12081296
Journal volume & issue
Vol. 12, no. 8
p. 1296

Abstract

Read online

Metallodrugs have a potent application in various medical fields. In the current study, we used a novel Palladium(II) thiazolinyl picolinamide complex that was directly fabricated over the titanium implant to examine its potency in inhibiting dual-species biofilms and exopolysaccharides. Additionally, inhibition of mono- and dual-species biofilms by coated titanium plates in an in vitro joint microcosm was performed. The study was carried out for 7 days by cultivating mono- and dual-species biofilms on titanium plates placed in both growth media and artificial synovial fluid (ASF). By qPCR analysis, the interaction of co-cultured biofilms in ASF and the alteration in gene expression of co-cultured biofilms were studied. Remarkable alleviation of biofilm accumulation and EPS secretion was observed on the coated titanium plates. The effective impairment of biofilms and EPS matrix of biofilms on Pd(II)-E-coated titanium plates were visualized by Scanning Electron Microscopy. Moreover, coated titanium plates improved the adhesion of osteoblast cells, which is crucial for a bone biomaterial. The potential bioactivity of coated plates was also confirmed at the molecular level using qPCR analysis. The stability of coated plates in ASF for 7 days was examined with FESEM-EDAX analysis. Collectively, the present study provided an excellent anti-infective effect on Pd(II)-E-coated titanium plates without affecting their biocompatibility with bone cells.

Keywords