AIP Advances (Feb 2020)

Investigation of resistive switching and transport mechanisms of Al2O3/TiO2−x memristors under cryogenic conditions (1.5 K)

  • Yann Beilliard,
  • François Paquette,
  • Frédéric Brousseau,
  • Serge Ecoffey,
  • Fabien Alibart,
  • Dominique Drouin

DOI
https://doi.org/10.1063/1.5140994
Journal volume & issue
Vol. 10, no. 2
pp. 025305 – 025305-7

Abstract

Read online

Resistive switching and transport mechanisms of Al2O3/TiO2−x memristor crosspoint devices have been investigated at cryogenic temperatures down to 1.5 K, for the future development of memristor-based cryogenic electronics. We report successful resistive switching of our devices in the temperature range of 300–1.5 K. The current–voltage curves exhibit negative differential resistance effects between 130 K and 1.5 K, attributed to a metal–insulator transition of the Ti4O7 conductive filament. The resulting highly nonlinear behavior is associated with an ION/IOFF diode ratio of 84 at 1.5 K, paving the way for selector-free cryogenic passive crossbars. Temperature-dependent thermal activation energies related to the conductance at low bias (20 mV) are extracted for memristors in a low resistance state, suggesting hopping-type conduction mechanisms. Finally, the transport mechanism analysis at 1.5 K indicates that for all resistance states, the conduction follows the space-charge limited current model in low fields, whereas trap-assisted tunneling dominates in higher fields.