Animal (Jan 2021)
Tissue-specific fatty acid composition, cellularity, and gene expression in diverse cattle breeds
Abstract
The nutritional quality of beef relates to the fatty acid (FA) composition of bovine adipose tissue. Those molecular mechanisms that induce the differing amounts and composition of fat in cattle breeds according to age at maturity and purpose of production remain unclear. Therefore, this study investigated the composition of total FAs, adipocyte size, and expression of some key genes involved in several adipogenesis and lipogenesis pathways measured in distinct adipose tissue depots from bulls of the genetically diverse cattle breeds Aberdeen Angus (n = 9), Gascon (n = 10), Holstein (n = 9), and Fleckvieh (n = 10). The animals were finished under identical housing and feeding conditions until slaughter at a similar age of 17 months. After slaughter, cod adipose tissue (CAT), subcutaneous adipose tissue (SAT), and M. longissimus lumborum (MLL) samples were collected. The saturated FA proportions were higher (P SAT > MLL, and the largest adipocytes were observed in CAT of Holstein bulls (P < .05). Gene expression differences were more pronounced between adipose tissue depots than between breeds. The expression levels of ACACA, FASN, and SCD1 genes were related to tissue-specific, and to a lesser extent also breed-specific, differences in FA composition.