Molecules (Nov 2017)
WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural
Abstract
This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO2 in the presence of WO3 at 1550 °C in argon resulted in the formation of WxC-β-SiC nanocomposite powders with significant variations in particle morphology and content of WxC-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA) of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (THFA). Nanocomposite WxC-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest WxC crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.
Keywords