Nonlinear Engineering (Jan 2019)
New exact and numerical solutions for the effect of suction or injection on flow of nanofluids past a stretching sheet
Abstract
The flow of nanofluids past a stretching sheet has attracted much attention due to its wide applications in industry and engineering. Theoretical and numerical solutions have been discussed in this paper for studying the effect of suction or injection on flow of nanofluids past a stretching sheet. In the absence of thermophoresis the analytical exact solution of the stream function was obtained in terms of exponential function, while the exact solutions for temperature and nanoparticle volume fraction were obtained in terms of the generalized incomplete gamma function. In addition, in the presence of thermophoresis, the exact solutions are not available. Therefore, the numerical results, carried out by using Chebyshev collocation method (ChCM). It is found that a good agreement exists between the present results and with those published works. Useful results for temperature profile, concentration profile, reduced Nusselt number and reduced Sherwood number are discussed in details graphically. It was also demonstrated that both temperature and concentration profiles decrease by an increase from injection to suction. Finally, the present results showed that increase of the wall mass transfer from injection to suction decreased both reduced Nusselt number and the reduced Sherwood number when Brownian motion parameter and Lewis number increased.
Keywords