Bioengineering (Jul 2017)

Estimating Extrinsic Dyes for Fluorometric Online Monitoring of Antibody Aggregation in CHO Fed-Batch Cultivations

  • Karen Schwab,
  • Friedemann Hesse

DOI
https://doi.org/10.3390/bioengineering4030065
Journal volume & issue
Vol. 4, no. 3
p. 65

Abstract

Read online

Multi-wavelength fluorescence spectroscopy was evaluated in this work as tool for real-time monitoring of antibody aggregation in CHO fed-batch cultivations via partial least square (PLS) modeling. Therefore, we used the extrinsic fluorescence dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4,4′-bis-1-anilinonaphthalene-8-sulfonate (Bis-ANS), or Thioflavin T (ThT) as medium additives. This is a new application area, since these dyes are commonly used for aggregate detection during formulation development. We determined the half maximum inhibitory concentrations of ANS (203 ± 11 µmol·L−1), Bis-ANS (5 ± 0.5 µmol·L−1), and ThT (3 ± 0.2 µmol·L−1), and selected suitable concentrations for this application. The results showed that the emission signals of non-covalent dye antibody aggregate interaction superimposed the fluorescence signals originating from feed medium and cell culture. The fluorescence datasets were subsequently used to build PLS models, and the dye-related elevated fluorescence signals dominated the model calibration. The soft sensors based on ANS and Bis-ANS signals showed high predictability with a low error of prediction (1.7 and 2.3 mg·mL−1 aggregates). In general, the combination of extrinsic dye and used concentration influenced the predictability. Furthermore, the ThT soft sensor indicated that the intrinsic fluorescence of the culture might be sufficient to predict antibody aggregation online.

Keywords