Nature Communications (May 2024)

Zero-field J-spectroscopy of quadrupolar nuclei

  • Román Picazo-Frutos,
  • Kirill F. Sheberstov,
  • John W. Blanchard,
  • Erik Van Dyke,
  • Moritz Reh,
  • Tobias Sjoelander,
  • Alexander Pines,
  • Dmitry Budker,
  • Danila A. Barskiy

DOI
https://doi.org/10.1038/s41467-024-48390-2
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, $$\triangle J=\left({\gamma }_{{}^{14}{{{{{\rm{N}}}}}}}/{\gamma }_{{}^{15}{{{{{\rm{N}}}}}}}\right){J}_{{}^{15}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}-{J}_{{}^{14}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}\approx -58$$ △ J = γ 14 N / γ 15 N J 15 N H − J 14 N H ≈ − 58 mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations.