Journal of Orthopaedic Surgery (Feb 2017)
Proposal of new classification of femoral trochanteric fracture by three-dimensional computed tomography and relationship to usual plain X-ray classification
Abstract
Purpose: Classification of femoral trochanteric fractures is usually based on plain X-ray findings using the Evans, Jensen, or AO/OTA classification. However, complications such as nonunion and cut out of the lag screw or blade are seen even in stable fracture. This may be due to the difficulty of exact diagnosis of fracture pattern in plain X-ray. Computed tomography (CT) may provide more information about the fracture pattern, but such data are scarce. In the present study, it was performed to propose a classification system for femoral trochanteric fractures using three-dimensional CT (3D-CT) and investigate the relationship between this classification and conventional plain X-ray classification. Methods: Using three-dimensional (3D)-CT, fractures were classified as two, three, or four parts using combinations of the head, greater trochanter, lesser trochanter, and shaft. We identified five subgroups of three-part fractures according to the fracture pattern involving the greater and lesser trochanters. In total, 239 femoral trochanteric fractures (45 men, 194 women; average age, 84.4 years) treated in four hospitals were classified using our 3D-CT classification. The relationship between this 3D-CT classification and the AO/OTA, Evans, and Jensen X-ray classifications was investigated. Results: In the 3D-CT classification, many fractures exhibited a large oblique fragment of the greater trochanter including the lesser trochanter. This fracture type was recognized as unstable in the 3D-CT classification but was often classified as stable in each X-ray classification. Conclusions: It is difficult to evaluate fracture patterns involving the greater trochanter, especially large oblique fragments including the lesser trochanter, using plain X-rays. The 3D-CT shows the fracture line very clearly, making it easy to classify the fracture pattern.