Neoplasia: An International Journal for Oncology Research (Sep 2004)
MXI1-0, an Alternatively Transcribed Mxi1 Isoform, Is Overexpressed in Glioblastomas
Abstract
The c-Myc transcription factor regulates expression of genes related to cell growth, division, and apoptosis. Will, a member of the Mad family, represses transcription of c-Myc-regulated genes by mediating chromatin condensation via histone deacetylase and the Sin3 corepressor. Mxi1 is a c-Myc antagonist and suppresses cell proliferation in vitro. Here, we describe the identification of MXI1-0, a novel Mxi1 isoform that is alternatively transcribed from an upstream exon. MXI1-0 and Mxi1 have different amino-terminal sequences, but share identical Max- and DNA-binding domains. Both isoforms are able to bind Max, to recognize E-box binding sites, and to interact with Sin3. Despite these similarities and in contrast to Will, MXl10 is predominantly localized to the cytoplasm and fails to repress c-Myc-dependent transcription. Although MXI1-0 and Mxi1 are coexpressed in both human and mouse cells, the relative levels of MXI1-0 are higher in primary glioblastoma tumors than in normal brain tissue. This variation in the levels of MXI1-0 and Mxi1 suggests that MXI1-0 may modulate the Myc-inhibitory activity of Will. The identification of MXI1-0 as an alternatively transcribed Mxi1 isoform has significant implications for the interpretation of previous Mxi1 studies, particularly those related to the phenotype of the mxi1 knockout mouse.
Keywords