智能科学与技术学报 (Dec 2022)
物理-数据-知识混合驱动的人机混合增强智能系统管控方法
Abstract
当代系统认知、管理与控制的核心理论、方法与技术已经转移到大数据和人工智能技术上,这导致当前人工智能技术条件局限与复杂系统认知、管理、控制的需求之间形成了一道鸿沟。因此,现实的需求催生了人工智能的一种新型形态——人机混合增强智能形态,即人类智能与机器智能协同贯穿于系统认知、管理、控制等过程的始终,人类的认知和机器智能认知互相混合,形成增强型的智能形态,这种形态是人工智能或机器智能可行的、重要的成长模式。提出了一种物理-数据-知识混合驱动的人机混合增强智能系统管控方法。从可信分布式数据、计算和算法,物理深度学习,融合系统运行规则的混合型深度强化学习,因果分析,可解释性AI与数字人5个方面详细阐述了所提方法。最后,以电力系统调控为背景,以3个应用为例分析了所提方法的应用方式和技术路径。