Remote Sensing (Sep 2020)
Drought Model DISS Based on the Fusion of Satellite and Meteorological Data under Variable Climatic Conditions
Abstract
The use of effective methods for large-area drought monitoring is an important issue; hence, there have been many attempts to solve this problem. In this study, the Drought Information Satellite System (DISS) index is presented, based on the synergistic use of meteorological data and information derived from satellite images. The index allows us to monitor drought phenomena in various climatic and environmental conditions. The approach utilizes two indices for constructing a drought index: (1) the hydrothermal coefficient (HTC), which characterizes meteorological conditions across the study area over a long-term period; and (2) the temperature condition index (TCI) derived from Moderate-resolution Imaging Spectroradiometer (MODIS) data, which refers instantaneous land surface temperature (LST) to long-term extreme values. The model for drought assessment based on the DISS index was applied for generating drought index maps for Poland for the 2001–2019 vegetation seasons. The performance of the index was verified through comparison of the extent of agricultural drought to the reduction in cereal and maize yield. Analysis of variance revealed a significant relationship between the area of drought determined by the drought index and the decrease in cereal yield due to unfavorable growth conditions. The presented study proves that the proposed drought index can be an effective tool for large-area drought monitoring under variable environmental conditions.
Keywords