Journal of Hematology & Oncology (Oct 2020)
Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: lessons from a large population-based registry study
Abstract
Abstract Background Patients with cancer have been shown to have a higher risk of clinical severity and mortality compared to non-cancer patients with COVID-19. Patients with hematologic malignancies typically are known to have higher levels of immunosuppression and may develop more severe respiratory viral infections than patients with solid tumors. Data on COVID-19 in patients with hematologic malignancies are limited. Here we characterize disease severity and mortality and evaluate potential prognostic factors for mortality. Methods In this population-based registry study, we collected de-identified data on clinical characteristics, treatment and outcomes in adult patients with hematologic malignancies and confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection within the Madrid region of Spain. Our case series included all patients admitted to 22 regional health service hospitals and 5 private healthcare centers between February 28 and May 25, 2020. The primary study outcome was all-cause mortality. We assessed the association between mortality and potential prognostic factors using Cox regression analyses adjusted for age, sex, comorbidities, hematologic malignancy and recent active cancer therapy. Results Of 833 patients reported, 697 were included in the analyses. Median age was 72 years (IQR 60–79), 413 (60%) patients were male and 479 (69%) and 218 (31%) had lymphoid and myeloid malignancies, respectively. Clinical severity of COVID-19 was severe/critical in 429 (62%) patients. At data cutoff, 230 (33%) patients had died. Age ≥ 60 years (hazard ratios 3.17–10.1 vs 2 comorbidities (1.41 vs ≤ 2), acute myeloid leukemia (2.22 vs non-Hodgkin lymphoma) and active antineoplastic treatment with monoclonal antibodies (2·02) were associated with increased mortality; conventional chemotherapy showed borderline significance (1.50 vs no active therapy). Conversely, Ph-negative myeloproliferative neoplasms (0.33) and active treatment with hypomethylating agents (0.47) were associated with lower mortality. Overall, 574 (82%) patients received antiviral therapy. Mortality with severe/critical COVID-19 was higher with no therapy vs any antiviral combination therapy (2.20). Conclusions In this series of patients with hematologic malignancies and COVID-19, mortality was associated with higher age, more comorbidities, type of hematological malignancy and type of antineoplastic therapy. Further studies and long-term follow-up are required to validate these criteria for risk stratification.
Keywords