Agriculture (Jun 2024)

Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management

  • Min Chen,
  • Jie Zhang,
  • Hongtao Wang,
  • Lingyun Li,
  • Meizhen Yin,
  • Jie Shen,
  • Shuo Yan,
  • Baoyou Liu

DOI
https://doi.org/10.3390/agriculture14071006
Journal volume & issue
Vol. 14, no. 7
p. 1006

Abstract

Read online

The utilization efficiency of conventional pesticides is relatively low in agricultural production, resulting in excessive application and environmental pollution. The efficient utilization of pesticides is crucial for promoting sustainable agriculture, and the development of nanopesticides presents a promising solution to the challenges associated with traditional pesticides. In order to explore an efficient application method for indendicarb (IDC), a star polymer nanocarrier (SPc) was employed to design and construct an efficient nanodelivery system for IDC. In this study, the morphology and physicochemical properties of the complex were determined, and its bioactivity and control efficacy were assessed using leaf-dipping and field spraying methods. The results show that IDC could be spontaneously incorporated into the hydrophobic core of SPc via hydrophobic association. This assembly disrupted the self-aggregated structure of IDC and significantly reduced its particle size to nanoscale. Furthermore, IDC emulsifiable concentrate (IDC EC) demonstrated improved adhesion to plant leaves with the aid of SPc, increasing retention from 8.083 to 10.418 mg/cm2. The LC50 (1d) of IDC EC against Plutella xylostella (Linnaeus) and Pieris rapae (Linnaeus) decreased by 6.784 and 1.931 times, respectively, with the addition of SPc. The inclusion of SPc increased the control effect of IDC EC by up to 8.28% (7d, 3000×) for P. xylostella and 12.53% (3d, 8000×) for P. rapae. This reveals that the IDC EC + SPc formulation exhibits superior insecticidal activity against these two highly destructive insect pests. This study successfully developed a novel nanodelivery system for the efficient application of IDC, which has the potential to reduce over-application and promote sustainable agricultural practices.

Keywords