PLoS ONE (Jan 2017)
Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, Helicoverpa armigera and H. assulta.
Abstract
In order to acquire enough nutrients and energy for further development, larvae need to invest a large portion of their sensory equipments to identify food sources. Yet, the molecular basis of odor-driven behavior in larvae has been poorly investigated. Information on olfactory genes, particularly odorant binding proteins (OBPs) and chemosensory proteins (CSPs) which are involved in the initial steps of olfaction is very scarce. In this study, we have identified 26 OBP and 21 CSP genes from the transcriptomes of Helicoverpa armigera larval antennae and mouthparts. A comparison with the 34 OBP and 18 CSP genes of the adult antenna, revealed four novel OBPs and seven novel CSPs. Similarly, 27 OBPs (six novel OBPs) and 20 CSPs (6 novel CSPs) were identified in the transcriptomes of Helicoverpa assulta larval antennae and mouthparts. Tissue-specific profiles of these soluble proteins in H. armigera showed that 6 OBP and 4 CSP genes are larval tissue-specific, 15 OBPs and 13 CSPs are expressed in both larvae and adult, while the rest are adult- specific. Our data provide useful information for functional studies of genes involved in larval foraging.