Quantum (Aug 2021)

Effect of environment on the interferometry of clocks

  • Harshit Verma,
  • Magdalena Zych,
  • Fabio Costa

DOI
https://doi.org/10.22331/q-2021-08-17-525
Journal volume & issue
Vol. 5
p. 525

Abstract

Read online

Quantum interference of "clocks", namely of particles with time-evolving internal degrees of freedom (DOFs), is a promising avenue to test genuine general relativistic effects in quantum systems. The clock acquires which path information while experiencing different proper times on traversing the arms of the interferometer, leading to a drop in its path visibility. We consider scenarios where the clock is subject to environmental noise as it transits through the interferometer. In particular, we develop a generalized formulation of interferometric visibility affected by noise on the clock. We find that, for small noise and small proper time difference between the arms, the noise further reduces the visibility, while in more general situations it can either increase or reduce the visibility. As an example, we investigate the effect of a thermal environment constituted by a single field mode and show that the visibility drops further as the temperature is increased. Additionally, by considering noise models based on standard quantum channels, we show that interferometric visibility can increase or decrease depending on the type of noise and also the time scale and transition probabilities. The quantification of the effect of noise on the visibility – particularly in the case of a thermal environment paves the way for a better estimate on the expected outcome in an actual experiment.