Remote Sensing (Feb 2022)

The Accuracy of Winter Wheat Identification at Different Growth Stages Using Remote Sensing

  • Shengwei Liu,
  • Dailiang Peng,
  • Bing Zhang,
  • Zhengchao Chen,
  • Le Yu,
  • Junjie Chen,
  • Yuhao Pan,
  • Shijun Zheng,
  • Jinkang Hu,
  • Zihang Lou,
  • Yue Chen,
  • Songlin Yang

DOI
https://doi.org/10.3390/rs14040893
Journal volume & issue
Vol. 14, no. 4
p. 893

Abstract

Read online

The aim of this study was to explore the differences in the accuracy of winter wheat identification using remote sensing data at different growth stages using the same methods. Part of northern Henan Province, China was taken as the study area, and the winter wheat growth cycle was divided into five periods (seeding-tillering, overwintering, reviving, jointing-heading, and flowering-maturing) based on monitoring data obtained from agrometeorological stations. With the help of the Google Earth Engine (GEE) platform, the separability between winter wheat and other land cover types was analyzed and compared using the Jeffries-Matusita (J-M) distance method. Spectral features, vegetation index, water index, building index, texture features, and terrain features were generated from Sentinel-2 remote sensing images at different growth periods, and then were used to establish a random forest classification and extraction model. A deep U-Net semantic segmentation model based on the red, green, blue, and near-infrared bands of Sentinel-2 imagery was also established. By combining models with field data, the identification of winter wheat was carried out and the difference between the accuracy of the identification in the five growth periods was analyzed. The experimental results show that, using the random forest classification method, the best separability between winter wheat and the other land cover types was achieved during the jointing-heading period: the overall identification accuracy for the winter wheat was then highest at 96.90% and the kappa coefficient was 0.96. Using the deep-learning classification method, it was also found that the semantic segmentation accuracy of winter wheat and the model performance were best during the jointing-heading period: a precision, recall, F1 score, accuracy, and IoU of 0.94, 0.93, 0.93, and 0.88, respectively, were achieved for this period. Based on municipal statistical data for winter wheat, the accuracy of the extraction of the winter wheat area using the two methods was 96.72% and 88.44%, respectively. Both methods show that the jointing-heading period is the best period for identifying winter wheat using remote sensing and that the identification made during this period is reliable. The results of this study provide a scientific basis for accurately obtaining the area planted with winter wheat and for further studies into winter wheat growth monitoring and yield estimation.

Keywords