AIMS Mathematics (Sep 2023)

The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index

  • Shengjie He,
  • Qiaozhi Geng,
  • Rong-Xia Hao

DOI
https://doi.org/10.3934/math.20231342
Journal volume & issue
Vol. 8, no. 11
pp. 26301 – 26327

Abstract

Read online

Let $ H $ be a connected graph. The edge revised Szeged index of $ H $ is defined as $ Sz^{\ast}_{e}(H) = \sum\limits_{e = uv\in E_H}(m_{u}(e|H)+\frac{m_{0}(e|H)}{2})(m_{v}(e|H)+\frac{m_{0}(e|H)}{2}) $, where $ m_{u}(e|H) $ (resp., $ m_{v}(e|H) $) is the number of edges whose distance to vertex $ u $ (resp., $ v $) is smaller than to vertex $ v $ (resp., $ u $), and $ m_{0}(e|H) $ is the number of edges equidistant from $ u $ and $ v $. In this paper, the extremal unicyclic graphs with given diameter and minimum edge revised Szeged index are characterized.

Keywords