Mathematics (Mar 2019)

Linear Operators That Preserve the Genus of a Graph

  • LeRoy B. Beasley,
  • Jeong Han Kim,
  • Seok-Zun Song

DOI
https://doi.org/10.3390/math7040312
Journal volume & issue
Vol. 7, no. 4
p. 312

Abstract

Read online

A graph has genus k if it can be embedded without edge crossings on a smooth orientable surface of genus k and not on one of genus k − 1 . A mapping of the set of graphs on n vertices to itself is called a linear operator if the image of a union of graphs is the union of their images and if it maps the edgeless graph to the edgeless graph. We investigate linear operators on the set of graphs on n vertices that map graphs of genus k to graphs of genus k and graphs of genus k + 1 to graphs of genus k + 1 . We show that such linear operators are necessarily vertex permutations. Similar results with different restrictions on the genus k preserving operators give the same conclusion.

Keywords