Human Genomics (Mar 2005)
A comprehensive literature review of haplotyping software and methods for use with unrelated individuals
Abstract
Abstract Interest in the assignment and frequency analysis of haplotypes in samples of unrelated individuals has increased immeasurably as a result of the emphasis placed on haplotype analyses by, for example, the International HapMap Project and related initiatives. Although there are many available computer programs for haplotype analysis applicable to samples of unrelated individuals, many of these programs have limitations and/or very specific uses. In this paper, the key features of available haplotype analysis software for use with unrelated individuals, as well as pooled DNA samples from unrelated individuals, are summarised. Programs for haplotype analysis were identified through keyword searches on PUBMED and various internet search engines, a review of citations from retrieved papers and personal communications, up to June 2004. Priority was given to functioning computer programs, rather than theoretical models and methods. The available software was considered in light of a number of factors: the algorithm(s) used, algorithm accuracy, assumptions, the accommodation of genotyping error, implementation of hypothesis testing, handling of missing data, software characteristics and web-based implementations. Review papers comparing specific methods and programs are also summarised. Forty-six haplotyping programs were identified and reviewed. The programs were divided into two groups: those designed for individual genotype data (a total of 43 programs) and those designed for use with pooled DNA samples (a total of three programs). The accuracy of programs using various criteria are assessed and the programs are categorised and discussed in light of: algorithm and method, accuracy, assumptions, genotyping error, hypothesis testing, missing data, software characteristics and web implementation. Many available programs have limitations (eg some cannot accommodate missing data) and/or are designed with specific tasks in mind (eg estimating haplotype frequencies rather than assigning most likely haplotypes to individuals). It is concluded that the selection of an appropriate haplotyping program for analysis purposes should be guided by what is known about the accuracy of estimation, as well as by the limitations and assumptions built into a program.
Keywords