Mathematics (Oct 2024)
Topological Interactions Between Homotopy and Dehn Twist Varieties
Abstract
The topological Dehn twists have several applications in mathematical sciences as well as in physical sciences. The interplay between homotopy theory and Dehn twists exposes a rich set of properties. This paper generalizes the Dehn twists by proposing the notion of pre-twisted space, orientations of twists and the formation of pointed based space under a homeomorphic continuous function. It is shown that the Dehn twisted homotopy under non-retraction admits a left lifting property (LLP) through the local homeomorphism. The LLP extends the principles of Hurewicz fibration by avoiding pullback. Moreover, this paper illustrates that the Dehn twisted homotopy up to a base point in a based space can be formed by considering retraction. As a result, two disjoint continuous functions become point-wise continuous at the base point under retracted homotopy twists. Interestingly, the oriented Dehn twists of a pre-twisted space under homotopy retraction mutually commute in a contractible space.
Keywords