Environment International (Sep 2019)

Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions

  • Georgios Giovanoulis,
  • Minh Anh Nguyen,
  • Maria Arwidsson,
  • Sarka Langer,
  • Robin Vestergren,
  • Anne Lagerqvist

Journal volume & issue
Vol. 130

Abstract

Read online

Consumer goods and building materials present in the preschool environment can be important sources of hazardous chemicals, such as plasticizers, bisphenols, organophosphorus and brominated flame retardants, poly- and perfluoroalkyl substances, which may pose a health risk to children. Even though exposure occurs via many different pathways, such as food intake, inhalation, dermal exposure, mouthing of toys etc., dust has been identified as a valuable indicator for indoor exposure. In the present study, we evaluate the efficiency of product substitution actions taken in 20 Swedish preschools from the Stockholm area to reduce the presence of hazardous substances in indoor environments. Dust samples were collected from elevated surfaces in rooms where children have their everyday activities, and the concentrations found were compared to the levels from a previous study conducted in 2015 at the same preschools. It was possible to lower levels of hazardous substances in dust, but their continued presence in the everyday environment of children was confirmed since bisphenol A, restricted phthalates and organophosphate esters were still detectable in all preschools. Also, an increase in the levels of some of the substitutes for the nowadays restricted substances was noted; some of the alternative plasticizers to phthalates, such as DEHA and DEHT, were found with increased concentrations. DINP was the dominant plasticizer in preschool dust with a median concentration of 389 μg/g, while its level was significantly (p = 0.012) higher at 716 μg/g in preschools with polyvinyl chloride (PVC) flooring. PBDEs were now less frequently detected in dust and their levels decreased 20% to 30%. This was one of the few times that PFAS were analyzed in preschool dust, where 6:2 diPAP was found to be most abundant with a median concentration of 1140 ng/g, followed by 6:2 PAP 151 ng/g, 8:2 diPAP 36 ng/g, N-Et-FOSAA 18 ng/g, PFOS 12 ng/g, PFOA 7.7 ng/g and PFNA 1.1 ng/g. In addition, fluorotelomer alcohols were detected in 65–90% of the samples. Children's exposure via dust ingestion was evaluated using intermediate and high daily intake rates of the targeted chemicals and established health limit values. In each case, the hazard quotients (HQs) were < 1, and the risk for children to have adverse health effects from the hazardous chemicals analyzed in this study via dust ingestion was even lower after the product substitution actions were taken in preschools. Keywords: Preschool, Dust, Plasticizers, Flame retardants, Bisphenols, PFAS