PLoS ONE (Jan 2011)

Modeling filamentous cyanobacteria reveals the advantages of long and fast trichomes for optimizing light exposure.

  • Carlos Tamulonis,
  • Marten Postma,
  • Jaap Kaandorp

DOI
https://doi.org/10.1371/journal.pone.0022084
Journal volume & issue
Vol. 6, no. 7
p. e22084

Abstract

Read online

Cyanobacteria form a very large and diverse phylum of prokaryotes that perform oxygenic photosynthesis. Many species of cyanobacteria live colonially in long trichomes of hundreds to thousands of cells. Of the filamentous species, many are also motile, gliding along their long axis, and display photomovement, by which a trichome modulates its gliding according to the incident light. The latter has been found to play an important role in guiding the trichomes to optimal lighting conditions, which can either inhibit the cells if the incident light is too weak, or damage the cells if too strong. We have developed a computational model for gliding filamentous photophobic cyanobacteria that allows us to perform simulations on the scale of a Petri dish using over 10(5) individual trichomes. Using the model, we quantify the effectiveness of one commonly observed photomovement strategy--photophobic responses--in distributing large populations of trichomes optimally over a light field. The model predicts that the typical observed length and gliding speeds of filamentous cyanobacteria are optimal for the photophobic strategy. Therefore, our results suggest that not just photomovement but also the trichome shape itself improves the ability of the cyanobacteria to optimize their light exposure.